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Calcium sulfate devolatization during the impact at Chicxulub, Mexico and dispersal in the strato-

sphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the

Cretaceous-Tertiary extinctions [1, 2]. In this paper, we investigated two shock-induced devolatiza-

tion reactions of calcium sulfate up to 42 GPa in the laboratory:

CaSO, + SiO2 ---- CaSiO3 + SO3 T

CaSO, ---CaO + SO2 T + ½ 02 T

We found both to proceed to a much less extent than calculated by equilibrium thermodynamic calcu-

lations. Reaction products are found to be 10 -2 times those calculated for equilibrium. Consequently

our estimate of the amount of sulfur oxides degassed into the atmosphere from shock devolatization of

CaSO4 in the Chicxulub lithographic section (6xl01S-2xl01eg i_ sulfur mass) is lower by a factor of

70 to 400 than previous estimates, the related environmental stress arising from the resultant global

cooling of _,4 K and fallout of acid rain does not appear to suffice to explain the widespread K-T

extinctions.
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L Introduction

Since Alvarez et a/.[3] proposed the Cretaceous-Tertiary (K-T) impact hypothesis, the Chicxulub impact

structure has been recognized as the leading candidate for the crater(s) associated with the bolide. Strong

supporting evidences relating the Chicxulub, Yucatan crater with the world-wide extinction include the

following:

I. Tektites, presumably representing fused target material, from Beloc, Haiti and Mimbral, Mexico K-

T sections show the glass source terrane is likely to be a continental margin [4, 5]. This environment

contains sediments rich in carbonate and sulfate, which is consistent with Chicxulub stratigraphy.

Oxygen and strontium isotope analyses [6] also favor Chicxulub over the Manson, Iowa crater as the

source for the tektite-like glassy ejecta, which, in most world-wide locations, has been weathered

to various clays;

2. The tektites and Chicxulub melt rock have been (agAr/4°Ar)-dated and found to be coeval within

0.1 m.y. at 65 m.y.[7];

3. Tsunami deposits exactly at K-T boundary, which have now been recognized to occur around the

present the Gulf of Mexico. This supports the hypothesis of a nearby impact site[8, 9].

The dominance of calcium carbonate (calcite) and calcium sulfate minerals (anhydrite and gypsum) in

the upper 3 km of the Chicxulub section (in the sequence of limestone, anhydrite-dolomite conglomerates,

limestone-dolomite and anhydrite-gypsum layers [10]) has led to active research into the effect of their

devolatization upon impact. Previous shock recovery experiments conducted on single crystal calcite

found calcite devolatization upon release to ambient pressure from shock pressures greater than ,,, 10

GPa. These experiments have suggested that a Chicxulub-size crater may be capable of increasing the

CO2 budget of the atmosphere by 5 x 1018 to 2x 1019 g, therefore the global atmospheric inventory of COs

(2.2x 1018 g in pre-industrial age [2], 2.7x 10 is g at present [11]) could have been increased by a factor of

2 to I0. This is hypothesized to have caused global warming of 2 to 10 K for periods of 104 to l0 s years

[I 1]. An environmental stress, which affected the proliferation of the wide range of genera which became

extinct at the K-T boundary has been suggested to have been induced by impact-liberated SOs or SOs

from sulfates. Estimates of the amount of SO2 and SOs devolatization (based on equilibrium conditions)
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ranges from 4x1017 to 8xI0 is g. If this amount of sulfur oxides produced stratosphere H2SO4 aerosol,

a rapid temperature decline of 10 to 20 K is predicted to have occurred for several years [1, 2]. In this

paper, we present results of calcium sulfate devolatization experiments under shock conditions via two

reactions:

CaS04 + SiO_ ---*CaSi03 + S03 T (A)

CaSO4 ----*CaO + SO2 T+ ½ 02 (B)

Reaction (A) is ofinterest because of its lower incipient reaction temperature than reaction (B) (1200 K

,'s. 1450 K) based on Gibbs formation energy calculations using thermodynamic data in [12] (we assume

ambient SO2/SOs and 02 partial pressures of 10 -4 and 0.2 bar respectively as in the contemporary

atmosphere). Heating experiments carried out in platinum tubes at 1 atm and 1,047-1,406°C suggest

this material could be the origin of the yellow Haiti glass[4]. The basement of Chicxulub is generally

thought to provide quartz for the reaction, but it is not clear at present how anhydrite/gypsum at

shallower depths could have reacted with the basement rocks. Nonetheless, the two reactions have been

investigated with anhydrite/silica powder mixture and anhydrite/gypsum polycrystalline disks.

Comparing to theoretical calculations, we found the experimental degree of sulfate devolatization for

powdered samples (particle size was tens of microns) was -_ 102 times lower than theoretically estimated.

Also, we estimate the mass of sulfur oxides released during the formation of the Chicxulub crater using

the upper limit of experimental reaction efficiency. Moreover, upon calculating the anisotropic shock

pressure decay in the lithologic rock section in which the Chicxulub crater formed, we estimate is that

6x10 is to 2xI016g of sulfur in various oxides could have been generated. Finally, we discuss the possible

environmental effects of injecting this amount of sulfur in the form of sulfuric acid and oxides into the

stratosphere.

2. Recovery experiments

Solid recovery experiments were performed on the Caltech 20 mm and 40 mm propellant guns. Samples

(-- 6 mm in diameter and ~2--3 mm in thickness) were encased in stainless steel containers, which were

pumped to -,- 30 millitorr vacuum before the shots [13, 14].



_.L Reaction between silica and anhydride

Experimental parameters are listed in Table 1 (two shock experiments on anhydrite/SiO are listed and will

be discussed later). The starting material was a mixture of silica (crystalline or amorphous, Alfa #13024

and 89709) and natural crystalline anhydrite (Ward's Geology #46E0535) powders and was pressed into

target container to initial densities of 60-85% of its Archimedian density. Average silica grain size was 4

pm, and anhydrite grains were mostly between 30-100 pm. Equation-of-state constants for the mixture

(see Table 2) were calculated from previous anhydrite data of Simakov e_ al. [15] and quartz data of Swegle

ef a/.[16] using the formulae by Boslough [17]: assuming uniform stress distribution, for a two-component

system,

V = rnaV, + m_V_,

/_'0s = [(vl/K0sl) + (v2/lCos2)] -1,

-"" .-I ,'2 ."1 "2
tlos = K_s[Vz(1 + IiosJ/gosl + v2(1 + EosJ/Iios j - 1,

(1)

(2)

(3)

where rni, V_, vi, Kosi and K_s i are the components' mass fractions, specific volumes, initial volume

fractions, bulk moduli and their pressure derivatives at zero pressure. Shock pressures determined by

impedance-match method range from 27.4 to 42.3 GPa. Five 20 mm shots and the two 40 mm shots

(see Table I) all had 1:1 molar ratio of anhydrite : silica. The initial porosity of the mixture were

17.2% (I106) to 40.0% (1108), Shot 1107 employed fused quartz; The 40 mm shots were conducted to

determine the shock duration effect on the reaction, but no reaction was seen in shot 917, and shot 923

was not recovered; Finally, shots 1109 and 1110 had anhydrite : silica molar ratios of 1:3.7 and 3.0:1.

Recovered samples were analyzed with petrographic microscopy, scanning electron microscopy (SEM,

instrument: Camscan Series 2 with Tracor Northern EDS detector TH-3/54-6901, operated at 15 kV)

and X-ray diffraction (XRD, instrument: Scintag DMC-008, radiation source: Cu-Ka_). Compared with

the original material, the changes exhibited in the 20 mm (except shot 1111, which will be described

separately in the following paragraph) post-shock samples are quite similar: in agreement with previous

research [18], silica becomes amorphous in spite of its original crystallinity (see XRD spectra in Figure 2);

Anhydrite is recovered as a crystalline phase. Although shock-induced mosaicism in the crystal grains

was observed with cross-polarized light on petrographic microscope, it appears unlikely that anhydrite



recrystallizedfrom a melt as no rounding ofthe grainswas observed (seeFigure 1 a).

Inshot 1111 (inwhich 10mass% ironpowder was intentionallymixed inadditiontoanhydrite/quartz),

devolatizationwas much more extensivethan the restof the shots and reactionof iron to iron sulfate

and ironsulfidewere observed. In theirstudy of sulfurspeciationin basalticglasses[19],Carrolland

Rutherfordreportedthatproportionofdissolvedsulfurpresentas sulfate(asopposed tosulfide)increases

from near 0% at FMQ (fayalite-magnetite-quartz)oxygen fugacityto near 100% at 2 to 3 logfo2 units

above FMQ. The oxygen fugacitypresentinthese recoveryexperiments was wellintothe sulfatestable

regime.The presenceofironsulfideledus to believethe greaterdegreedevolatizationofCaSO4 within i

mm ofthe stainlesssteelcontainerinallthe 20 mm shotswas affectedby the reducing effectofthe metal

and would not have occurred in itsabsence. In the centralmetal-freeregion,the dimensions of possible

reactionzones are so limitedthat they were nearly at the limitofspatialresolutionofthe SEM. In the

followingthreesectionswe willattempt to derivethe actualdegreeofdevolatizationfrom experimentally

observed chemicalcompositionsat differentlocationsin the samples.

2.1.1. SEM instrument resolution

The SEM electron beam spot is much less than lpm, but the dimension of excitation volume in the sample,

and therefore the instrument resolution, is larger due to electron scattering and secondary fluorescence

in the sample [20]. A "smearing" function is assumed to convolve with the "true" chemical composition

to give the observed composition. The function form is taken to be Gaussian:

y(x) = --e " ' (4)

f oo f(x)dx- (5)1
Oo

where 21 is a measure of spatial resolution. Anhydrite and quartz disks of ,,, ] mm thickness each were

sandwiched together and heated at 573 K for 6 hours, followed by a 24-hour press at ,_ 4000 psi so that

plastic flow may take place to produce a good contact (with less-than-1 #m gap) as a no-reaction reference.

A comparison between the SEM analysis across the pressed boundary and calculation (convolution of

Equation 4 and a step function) found l = 0.53pm to provide the best fit (Figure 3). This agrees with

our expectation that the resolution distance is larger than the electron beam diameter.



Thedata in Figures 3 and 4 are corrected for secondary fluorescence excited by characteristic ra-

diations. Another concern has been the fluorescence excited by the continuous spectrum. We use an

approximate equation ((15.10) in Reed [21]), modified for compounds by mutiplying the ratio of mass

attenuation coefficients of the excited element A (p_) and the compound (Pc), the intensity of fluo-

renscence I! relative to electron-excited characteristic K-radiation of element A in the compound I A is

thus

A
/_ 9.7 × 10-SZ 4p_ , (6)
I_ -- PC

(Z is the atomic number of the excited element). The correction factor for continuum fluorescence is

r! = 1/(1 + _). (7)

We consider three cases:

I.

.

.

Compound is 50 mol.% CaSO4 and 50 mol.% SiO_ (in the middle of the mixing zone),

Compound is near 100% SiO2 with a trace of Ca and S (deep into silica). I_/IC_=0.67%,

A sharp CaSO4-SiO_ boundary, with the electron beam shifted to SiO_ side so that the electron-

excitation volume is completely in SiO_. Any Ca and S signal is purely due to secondary fluorescence

from the SiO_ continuum (Si characteristic line is not energetic enough to excite Ca or S). The

secondary fluorescence intensity, relative to electron-excited radiation in pure CaSO4, is given by:

i_a,s ca,s
= 0.5 x 9.7 x 10-SZ _ Pc=so,

"c_so. pc_so. " (8)

Equation 8 is very similar to Equation 6 except the factor 0.5, which arises because only half of

the continuous radiation goes into CaSO_, neglecting the finite width of the primary X-ray source.

The ratios for Ca and S calculated are 0.23% and 0.11%.

More detailed numerical calculations were done and the results agree within 4-0.3%. Case (3) agrees very

well with observations at I pm in quartz from the cold-pressed boundary, where Ca and S signal intensities

are 0.24-0.1% and 0.44-1% of those in pure CaSO4 (Figure 3). For the shock-recovered samples, the Ca



and S intensities within ,_ 3/_m from the boundaries are much higher than the secondary fluorescence

level and the corrections are negaligible compared to the analytical uncertainty.

_.1._. Mizzng of sulfate wi_h silica

In shocked samples the boundary layer between calcium sulfate and silica is thicker than the cold-pressed

edge. In the following we examine several possible mixing mechanisms:

I. Solid state diffusion:

The diffusion constants of H, _sO and 3°Si atoms in quartz have been documented in [22]. At 800°C,

they vary over a wide range, with H having the highest D = 2.5 x 10 -11 m2/s, and 3°Si having

the lowest D = 1.3 x 10 -21 m2/s. In the time scale of our experiments ,,, lps, the characteristic

distance v/-D_ _ 10-s-10-2pm is much smaller than the observed reaction zone thickness;

2. Liquid state diffusion:

Rubie et aI. directly measured oxygen self-diffusivity in Na2Si409 melt up to 1825°C and between

4-I0 GPa [23]. The diffusion constant they reported ranges from 1.0 to 4.2x 10 -_° m2/s increasing

with temperature and pressure. Si-O bond breaking is the basic process controlling both O self-

diffusion in Na_Si409 and CaSO4 diffusion in silica melt which is of present interest. It is possible

to use these data to obtain an order-of-magnitude estimate of mixing time and length scales in

the SiO2 liquid. Again, in the lps shock duration, the highest diffusivity (4.20x 10 -_° mS/s) gives

characteristic distance 2 x 10-:#m, which is still too small to account for the #m-size mixing layer;

3. Rayleigh-Taylor instability:

Although initially crystalline quartz is amorphized during shock, we cannot conclude that it has

been once molten because quartz can transform to diaplectic glass without melting [18]. Since there

is a _trong contrast in strength of quartz and anhydrite (,,_ 1 GPa for quartz and ,_ 0.1 GPa for

anhyckite), we suggest Rayleigh-Taylor instability as the third mixing mechanism.

Rayleigh-Taylor instability arises at interfaces between two materials of different strength when they

are strongly accelerated or decelerated along a direction perpendicular to their planar interface.

According to the theoretical model by Drucker[24], when shock wave propagates from the stronger



materialinto the weaker material, the interface experiences alternating compressional and tensile

stress due to perturbations (bumps) on material surface. When the stress difference exceeds the

strength of the stronger material (a0), the bumps grow freely and instability occurs. Two important

derivations of the theory are threshold perturbation amplitude:

h'oh = H(1 +  12)e oFIP,

and time dependence of instability growth above the threshold:

(9)

h - htoh = (ho - htoh) cosh X/'_3Pt/(ApH), (10)

where H is material thickness, h0 is initial perturbation amplitude, p is material density, P is

shock pressure, ,_ is the perturbation wavelength, F is a geometric factor between 0.25-1, and

16
_= _~2-8.

A prominent feature of the theory is that the threshold is independent of wavelength A. Experiments

by Barnes et aL on aluminum and 304 stainless steel plates support the theoretical prediction [25].

For our case, e_0 ~ 1 GPa, p=2.65 g/cm 3, P=40 GPa, ,_ ~ H ~ grain size 4gin, the threshold

thickness perturbation calculated from Equation 9 is ~ 0.4#m, which is very reasonable. Above

threshold, the growth is very fast: for an initial perturbation 10% above threshold, Equation 10

indicates that it takes a few nanoseconds to grow to sizes Comparable to _/2, after which the theory

is no longer valid.

From the above discussion, only Rayleigh-Taylor instability emerges as a plausible mixing mechanism.

Although it is not a diffusive process, we describe the shocked sample interface mathematically by a linear

diffusion profile. Denote gca(z) =the molar ratio of Ca/O, the solution of one dimensional diffusion

equation (heat equation, see, e.g., [26]) with initial conditions:

0.25 if z<0
gco(=)l,=o=

0 ifz > 0

is

1

gca(z) = -gerfc(z/L). (11)
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A fit to the shocked sample profile (convolved with f(¢)) gives the mixing length L __ 1.5pro (solid

line in Figure 3):

. _,.I.8. Degree of devolatization

gSEM/:c_ fooco _ j = f(_ - x')gco(x')dx' (12)
oo

The experimentaIly seen devolatization shows some scatter (Figure 4).

average of 20% S molar loss in the region -L < z < L, so the ratio S/O is

gs(x) = 0.8gca(z) = O.lerfc(z/L). (13)

The S/Ca profile observed on SEM is given by

oo ^[xr_e_(Zl_z)_/12 j_ t

(S/Ca)(x) = f-_ g_ _ "_• _ (14)f_-oo gca( x')e-(*'-*)a /Z2dx"

Bulk devolatization, defined as the fraction of sulfur loss in the boundary layer over the total sulfur

mass in the original sample, is given by

3 × f_LL(gco- gs)d_
DV =

gcol_-__R ' (15)

where R is the anhydrite grain size. The factor 3 takes into account the three dimensional effect.For

R = I00pm, evaluation of the formula yields a numerical value of DV = 6 x 10 -a.

We infer that anhydrite mixed into silica upon shock loading and underwent devolatization during

release. Tyburczy and Ahrens [13] used the following approach to calculate the extent of shock-induced

reactions:

For simplicity, we assume an

I. Entropy excess required for incipient reaction:

[T,R Cp
SIR = .-f-dT, (16)

JTo

where To is room temperature, TIR is the temperature of incipient reaction (at which the sums of

Gibbs formation energies for the reactants and products are equal), Cv is the atmospheric pressure

heat capacity at constant pressure.

2. Entropy excess required for complete reaction:

Sc_ = SH_ + AS - Z niRln(Pi/Po),

gas products

(17)



I0

where AS is the entropy difference between reactants and products as computed from Robie et al.

[12], the last term on the right takes into account effects of partial pressures, Pi, of gas products

(P0 is the ambient pressure), ni is the number of moles of gas specie i, R is the gas constant (8.31

J moI-1K-1).

3. Entropy gain in the shocked state (and in the post-shock state assuming isentropic release):

ASM= S,r + ln(Tx/Ts), (18)

where S,r is the entropy change of phase transition during compression, Ts is the temperature

of isentropic compression from initial volume V0 at temperature T/ to Hugoniot volume VH and

isentropic pressure Ps:

where 7 is the Grfineisen parameter. TH is the shock temperature, determined by:

- po)
7 = a,_ C_dT (20)

$

C_ is heat capacity at constant volume (at high pressure).

4. The extent of reaction is given by:

Fraction of material reacted = ASH - SIR
ScR - &R " (21)

The results from Equation 2I for reactions (A) and (B) are shown as the solid and broken curves in

Figure 5. The equation-of-state parameters are the same as in Table 2, and S,r=O for the calculation.

Local devolatization in the reaction layer is close to theoretical calculation, but decomposed anhydrite

is only a small portion (_ 6×10 -3) of the total mass because of the dimension of the reaction layer is

much smaller relative to the grain size (,,- 100/am). In the Chicxulub section, mixing of calcium sulfate

and quartz was certainly less intimate, the reaction efficiency should be even lower.

2.2. Decomposition of anhydrite and gypsum alone

Since calcium sulfate strata often do not occur close to quartz in the Chicxulub section, decomposition of

anhydrite/gypsum is an important issue to the evaluation of sulfur oxides production. Similar recovery
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experimentsup to 42.7 GPa have been conducted on anhydrite and gypsum samples (Table 3). The

samples were nonporous single crystalline gypsum and polycrystalline anhydrite disks approximately 4

mm in diameter and 0.5-1 mm in thickness (mass 20-30 mg). In several of the shots the samples were

sandwiched between Zn disks in an attempt to enhance solid recovery.

On SEM images (Figure 1 b), the recovered samples show textures that are not different from un-

shocked anhydrite and gypsum. There is no indication of inhomogeneous shear band heating which has

been recognized as the major volatile loss mechanism for calcite [27]. Thermogravimetric analysis (TGA)

was performed on Thermal Analysis System SETARAM TG92. Milligram-mass samples were analyzed in

a He atmosphere, heating from 25 to 1600°C at a heating rate of 2°C/min. Impact-induced mass loss was

determined as the difference in mass loss between shocked and unshocked samples. TGA and chemical

analyses on the SEM (on apparatus described previously) revealed no variation in sulfur concentration

beyond analytical uncertainty (-,. 2%). Devolatization of 72-76% of the total H20 was detected by TGA

in shocked gypsum (Table 3).

In summary, in the pressure range covered by the experiments, the fraction of sulfur, by mass, that

degassed is -_ I0 -2 of theoretical prediction (Figure 5), and overall sulfur devolatization is minimal.

Both reactions (A) and (B) are endothermic, with rather large enthalpy increases of 313 (for a-quartz

as reactant, 305 for fused quartz) and 502 kJ per mole reacted CaSO4 [12], which are 17 and 27%

of the specific shock energy of a 40 GPa impact on non-porous materials. To examine the role of

enthalpy difference in shock-induced reactions, we conducted two recovery experiments on anhydrite and

amorphous silicon monoxide (SiO, Alfa #89430) powder mixture (Table 1). The reaction in question is

CaSO4 + SiO --_ CaSiO3 + SO2 T (c)

We observed extensive reaction in the recovered material of shot 1098, where S in anhydrite is reduced

by a factor of 4-5: Although enthalpy of SiO glass is unknown, it is a less stable compound than quartz

and therefore absorbs less energy in reaction (C). The weaker bonding structure compared to SiO_ could

also give rise to a much higher diffusion rate. Both may contribute to the excessive reaction occurred.
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_. Implications for the K-T boundary

3.1. Pressure decay in the _ransienf Chiczulub crater

Previousstudies on craterformation mechanisms giveformulae forpressuredecay with distanceR along

the centerlineina transientcrater[29,30,31].For example, Ahrens and O'Keefe[29]calculatedgabbroic

anorthositeor ironmeteoritescrateringplanetaryanorthositetargetand fittheircalculationswith two

branches using exponentialfunctionsof the form:

log10(P/Mbar) --a log10(R/R0) + b (22)

where It0isthe radiusofthe meteorite,parameters a and b assume differentvaluesfordifferenttargets

and in the near-and far-field(a < 0).

The Schmidt-Holsapplescaling[31]breaks down the pressuredecay in largecratersintofourranges-

near source,strongshock,intermediateshock and materialstrengthregimes,in each ofwhich the peak

shock pressuredecays exponentiallywith normalized distanceR/R0, the exponents (equivalentto pa-

rameter a in Ahrens-O'Keefe model) are 0,-3.6,-1.8and -1.18in successiveregimes away from impact

center.

These two approaches give roughly the same pressure decay profilesifthe parameters are chosen

properly.A more important effectto take intoaccount in evaluatingsulfatedevolatizationisthe de-

viationof equi-pressurecontours from a hemisphericalsurface because of rarefactionwave from the

target free surface. Define _;_apor"actual and xzmezt,act_a_ to be the vaporization and melt volumes (normalized to

impactor volume) given in O'Keefe and Ahrens [30], _z_a_'°r'h._.and Vhm.,e._.. to be the normalized vaporiza-

tion and melt volumes calculated assuming hemispherical peak shock pressure contours. For a 15 km/s

anorthosite meteorite impacting anorthosite _Zme_,act_a_//_Zme_t,_.,is only 0.052; For a 45 km/s anorthosite on

anorthosite impact, V,'_:_JV_2"=O.040 , V,_c_:_/V_:P°r=O.042; For a 15 km/s iron on anorthosite im-

pact, _Zrne#t,ac_aU,h.,/XZrne_t_n___.=,.._,_In this paper, we modify the simple model by assigning each hemispherical

shell an "average" pressure that is lower than the centerline pressure. Although this is not a rigorous

treatment, it can be regarded as a first-order correction for the effect of the two-dimensional rarefaction

wave (Figure 6). The pressures of the points labeled "complete vaporization" and "complete melting" are

complete phase change pressures, their radii are chosen such that the hemispherical volumes within are
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equal to the volumes given in [30]. Such derived a, b parameters for the "average" pressure attenuation

are listed in Table 4.

A few noticeable features in Figure 6:

I. Near impact center, pressure profile is dominated by the initial shock, centerline and average pres-

sures should not differ very much;

2. Their deviation grows larger at larger radius as rarefaction wave becomes important;

3. At great depth (far away from the target surface), self-similarity is established, the average pressure

curve is parallel but offset downward to the centerline pressure curve.

In Figure 7, centerline pressure profiles given by Holsapple-Schmidt scaling [31] and Ahrens-O'Keefe

formula [29] are plotted together with estimated averaged pressure for transient Chicxulub crater, assumed

to behave as gabbroic anorthosite, if the bolide was an chondritic asteroid, also similar in behavior as

gabbroic anorthosite. The effect of different initial impact velocity is represented through the center

peak pressure. The average pressure decay is then deduced from the Ahrens-O'Keefe profile and the

corrections in Table 4. Based on this profile, the theoretical incipient devolatization pressure (__ 25 GPa)

corresponds to a devolatization hemispheric diameter of 50 km in the target rocks.

An alternative scenario is the bolide was a comet (p __ 1 g/cm 3, v _ 60 km/s). From in si_u

mass spectrum measurements in several Halley flybys by the Giotto and Vega spacecraft in 1986, it

was found [32] the element composition of the comet is similar (within a factor of two) relative to CI

chondrites for elements heavier than O. The comet is much more enriched in CHON elements, and as a

result, the atomic concentrations of heavy elements are about one fourth of the corresponding values for

chondrites. Since the average atomic weight is also lower for the comet (__ 9.6 vs. __ 14.9 for chondrites),

the comet/chondrite mass abundance ratio for heavy elements is about 0.4. To maintain the global Ir

anomaly constant (estimated at 3.7× 10 l° g from the Gubbio section [3]), the comet's diameter has to be

around 14 kin. Following a similar calculation as for a gabbroic anorthosite asteroid, the devolatization

hemispheric diameter would become 97 km.



: : .................. : ........ _::: ..... : _i : _ :::<_ .... _ : : •-: : ....._-::: : : • L i• ....../_i•_••_i!Li_?i_!_i_!i!_i_i_i_!_!_!iii_iii_i!iii_i_i_i_ii_!iii!iiii_iiii_ii_iiiiiii_ii•!i_i_i_!_i_iiiiiii_i_iiiiiiii_iiiiiiiiii_i_i_iiiiiiii:

14

3._. Conclusions

Our experiments do not cover the entire pressure range of the K-T impact, but our results show conclu-

sively that shock-induced calcium sulfate devolatization requires higher shock pressure than devolatization

of serpentine, calcite and Murchison carbonaceous chondrite[13, 27, 33]. The extent of devolatization re-

actions are on the order of 10 -2 less than predicted via equilibrium calculation. One reason for this

appears to be the lack of shear bands in anhydrite/gypsum and poor mixing between anhydrite and

silica. Scaling up to the Chicxulub crater gives a rough estimate of sulfur degassing during its formation.

Assume:

I. A 500 m-thick calcium sulfate bed 1 km below surface [1] in which 50% of the mass was CaSO4,

2. the degree of reaction was about 2% (upper limit of experimental uncertainty of anhydrite/gypsum

devolatization) within the reaction diameter,

the total degassed sulfur mass wais 6x 1015g (in forms of SOs and SOs) for an asteroid impact. Under

the same assumptions, the estimate in case of a comet impact was 2x 101Sg.

This mass is much less than previous estimates given by Brett[1] or Sigurdsson et al. [2] (4x101_-

8x 1018 g) mainly due to the experimentally observed devolatization occurs to a much lower extent (by a

factor of 70 to 400) than previously assumed, but it is still about one to two orders of magnitude above

the amount of SO2 released by the eruption of Tambora in 1815 (estimated at 1-2x 1014 g and caused

cooling of 0.7 K in the following 2 years [34, 36, 37]). However, our estimate supports Blum et al.'s

suggestion that most of the Haiti yellow glass was derived from shock-induced mixing of silicates with

carbonates rather than sulfate-bearing rocks[6].

How the reactions proceed at pressures under which the reactants are molten is not answered by our

present experiments. To give an upper limit, we assume perfect mixing and 100% devolatization inside

34 km hemispheric diameter from the center of the Chicxulub crater (which corresponds to pressures

greater than 52 GPa), the amount of S released is about 1.4x10 iv g, which is still a factor of 3 lower

than previous estimates. However, we regard such an amount as unlikely.
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,?.3. Environmental e_ects

The theory of lofting of impact volatized S02 and SOs from a crater and temperature decline due to the

increase in optical depth resulting from stratospheric H2S04 aerosol has yet to be worked out. Therefore,

evaluation of the environment effects of the K-T impact mostly relies on climatic changes after historic

largevolcaniceruptions.Sigurdsson used the followingempiricalrelationto correlatethe volcanicsulfur

mass yieldz,in grams, to observed temperature decreasesafterthe eruptions[35]

AT = 5.9 x 10-sx °31 (23)

Extrapolatingto our estimate of sulfurrelease(x=6x1015-2x1016), itis expected to give riseto

short term globalcoolingof ,_4-6 K and acid rainoutof 40-150 g/m s on the earth'ssurface.Recently,

Vogelmann d al.[38]discussedthe effectofvolcanicSO2 releaseon the ozone layerby providingH2SO4

aerosolsurfaceson which chlorinecan reacttoforms that catalyzeozone depletion[39,40].Vogelmann e_

a/.pointout that the resultingincreaseinUV-B radiation(290-320 nm) could be biologicallyhazardous

evenforlargevolcaniceruptions.However, H2SO4 aerosolalsoincreasesopticaldepth inthe UV radiation,

which could partiallycompensate for ozone depletion. The relationbetween SO2 releaseand ozone

depletionisnot establishedatpresent.In conclusion,we suggestthatina few yearsafterthe K-T impact,

the volatizedsulfuroxidesand sulfuricacidaerosolwould have caused a drop inthe earth'stemperature

by 4-6 K, but the coolingcould have been partiallyor completelyoffsetby the CO2 green house effect.

As sulfuricacid aerosolseparated from the atmosphere, the earth underwent a more persistentwarm

period of tens of thousands ofyears when the temperature was raisedby as much as 10 K [11].The

environmentaleffectsof sulfatedevolatizationcould have been quitehazardous,but itselfalone may not

sufficeas a potent extinctionmechanism.
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Tables

Shot #a

1106

I107

1108

1109

1110

1111

1112

917(40mm gun)

923(40mm gun)
1098

1099

TABLE 1. Recovery experiments on arahydrite/sillca and anhydrite/SiO.

Sample Molar ratio (an-hydrite:silica) Projectile '/pro i (kin/s) Ppe,k (GPa)
anhydrite/qtz 1:1 Ta 1.87 33.8

anhydrite/fused qtz 1:1 W 2.02 42.2

anhydrite/qtz 1:1 Ta 1.92 35.0

anhydrite/qtz 1:3.7 Ta 1.90(?) 42.3

anhydrite/qtz 3.0:1 Ta 1.94 32.5

anhydrite/qtz/Fe 1:1 Ta 1.89 34.3

anhydrite/qtz 1:1 Ta 1.88 34.1

anhydrite/qtz 1:1 Ta 1.59 27.4

anhydrite/qtz 1:1 Ta 1.77 31.5

anhydrite/SiO _ W 2.06 --

anhydrite/SiO __ Ta 1.58 --

1 On CMtech's 20ram gun unless noted otherwise.



2O

TABLE 2. Equation-of-state constants of
anhydrite, silica and their mixture.

Material P (g/cm 3) Kos (GPa) K_,_
Anhydrite (LPP) 2.97 38.5 6.0

Silica (HPP) 4.29 350 3.3
Mixture (I:I mo]ax) 3.28 48.7 7.6
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TABLE 3. Recovery experiments on a_ydrite and gypsum.

Shot #_ Sample Projectile Vproj (kin/s) Ppe,k(GPa) _ H_O loss (%)
1090 aahydrite Ta 1.11 23.6 --

1091 anhytirit e Ta 1.48 33.2

1092 an_hydrite Ta 1.66 38.0

1103 anhydrite Ta 1.77 41.2 --

1093 m_hydrite Ta 1.82 42.7

1101 gypsum Ta 1.35 29.7 72

I094 gypsum Ta 1.59 36.2 76

1102 gypsum Ta 1.81 42.1 76

1 On Caltech's 20ram gun.

_Caicnlated using stainless steel equation of state [28].
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TABLE 4. CenterlJne and average pressure attenuation:

Iog_o(P/Mbar)= a loglo(R/_)+ b
Near-field Far-field

a b a b
An--_An Centerline 1 -0.293 1.208 -2,15 2.373
45 km/s ' Average -0.616 0.947 -2.18 1.394

An--*An Centerline I -0.222 0.285 -I.97 1.399
15 km/s ' Average -0.608 -0.024 -1.97 0.556

Fe-,An CenterlJne _ -0.295 0.470 -2.49 1.475

15 km/s Average -2.49 1.167

1After Ahrens and O'Keefe [29].
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TABLE 5. Parameters a, b used to estimate peak and average pressures of Chicxulub crater.
Near-field Far-field
a b a b

Centerline -0.222 0.501 -1.97 1.62

Average -0.608 0.192 -1.97 0.772
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Figures

Fig. I. SEMI images of after-shocksamples: a. Anhydrite (lightcontrastgrains)and quartz (dark areain between). Shot

#1106, 33.8GPa; b. Anhydrite/gypsum. Shot #1102, 42.1GPa.

TJA93250SFD
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Fig. 2. X-ray diffractionspectraof silica-anhydritemixture before-and after-shock(Shot #II09, 42.3 GPa). The two

spectraat bottom are JCPDS standardsfor CaSO4 and SiO2. Molar ratioof silicato anhydriteis3:1.Initiallycrystalline
quartzisamorphized in the after-shockmaterial.

TJA9325 ISFD
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Fig. 3. Atomic ratio of Ca/O profiles of three recovery shots on calcium sulfate and quartz. A cold pressed sample was

used to estimate SEM resolution. Theoretical fits are given by Equation 12 with parameters: (1) dashed curve: l -- 0.53#rn,
L=0; {2) solid curve: l = 0.53#m, L = 1.5#m. The data at 1 _na on the dashed curve represent three analyses at different
locations near the boundary.

TJA93252SFD
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Molar ratio S/Ca
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Fig. 4. Atomic ratio of S/Ca profiles of recovery shots on calcium sulfate and quartz. Solid curve is given by Equation 14.

Further into SiO2, S/Ca ratio becomes indeterminate and is indicated by the dashed line. Error bars represent SEM

analytical uncertainty. Results for other 20 turn shots are similar and not shown.
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Fig.5. Degree ofdevolatizationvia reactions(A) and (B) as a functionofshock pressure.The curvesare calculatedusing

Equations16-21. Partialpressuresof Oa and SO2/SOa are taken to be 0.2 and 10-4 bar respectivelyin the calculation,

which arerepresentativevaluesfornormal atmosphere. Impact velocitiesare indicatedforshockpressuresof20,40, 60 and
80 GPa.

TJA93254SFD



29

d_

g
I

.=_

2.4

1.6

0.8

0

-0.8

-1.6

"' ! t i i i I ! i

_-_.._.............. i a \i.i

kl.........
__. lsapp -sc  ,t!i.,°°'''
....me.s-O'Keefe \ "'i""
-- Average _ ....,.

• Complete vaporization _ ,',,

• ,Complet,cmelting, , , \.._, "'...,..

.0.8 .0.4 0 0.4 0.8 1.2 1.6 2

Normalizedradius-logl0(R/Ro)

Fig. 6. Shock pressure versus normalized radius at 45 km/s for gabbroic anorthosite impactors. Holsapple-Schmidt scaling

relation is also shown for the same impedance-matched center peak pressure. Inset: Pressure attenuation for: a. 15 krn/s

anorthosite on anorthosite impact; b. 15 km/s iron on anorthosite impact. See text for meaning of "average".
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Fig.7.ShockpressuresversusnormalizedradiusfortransientChicxulubcraterfrom anasteroidimpact.The bolideare

targetrockareassumedtohaveequationofstateofgabbrolcanorthosite.Bolideinitialvelocityis20km/s,R0--5km.
ParametersusedarelistedinTable5.Seetextformeaningof"average".
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